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Abstract. In this study, we propose approximate algorithm solution of the space-
fractional diffusion equation (SFDE’s) based on a quarter-sweep (QS) implicit 
finite difference approximation equation. To derive this approximation equation, 
the Caputo’s space-fractional derivative has been used to discretize the proposed 
problems. By using the Caputo’s finite difference approximation equation, a linear 
system will be generated and solved iteratively. In addition to that, formulation 
and implementation algorithm the Quarter-Sweep AOR (QSAOR) iterative 
method are also presented. Based on numerical results of the proposed iterative 
method, it can be concluded that the proposed iterative method is superior to      
the FSAOR and HSAOR iterative method. 

 
1.  Introduction 
 
     In this paper we focus on numerical solution for one-dimensional SFDE’s. Generally, 
linear SFDE’s given as follows  
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With initial condition ( ) ( ) ,x0,xfx,0U ≤≤= and boundary conditions ( ) ( ),tgt0,U 0=  
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     We describe some necessary definitions and mathematical preliminaries of the fractional 
derivative theory which are required for our subsequent development of the approximation 
equation for the problem in Eq.(1). 
 
Definition 1.[1,2] The Riemann-Liouville fractional integral operator ,  βJ of order- β  is 
defined as 

 ( )∫ −

Γ
=

x

0

1 dt,tf)t-x(
)(

1)x(fJ ββ

β
0>β 0x >                                                                                 (2)                          

Definition 2.[2, 3] The Caputo’s fractional partial derivative operator, βD  of order - β  is 
defined as 
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With ,m1m ≤<− β m∈N, 0x > . 
 
     In this work, we discretized SFDE’s equation using implicit finite difference scheme with 
Caputo’s derivative operator in order to examine the implementation of QSAOR iteration 
method in solving the resultant linear system of equations. The standard AOR iterative 

mailto:*andang99@gmail.com


 
 
 
 
 
 

method also known as the FSAOR iterative method and HSAOR is implemented as control 
method in order to investigate the performance of QSAOR iterative method. 
 
2. Quarter-Sweep Caputo’s Implicit Finite Difference Approximation Equations 
 
     In this section, the space-fractional diffusion equation (1) is solved. In order to find 
solution in Eq. (1), let us define ,
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h  where, m=n+1 is positive even integer.  By 

implementing definition (2) we obtain  
( )

( ) ( ) 









−






 +∑ Υ+Υ−Υ

−Γ
=

∂
Υ∂ −−

=
+

βββ

β

β

β

22
4-i

0,4,8j
n4,-j-inj,-in4,j-i

-
ni

4
1

4
j2

3
(4h)

x
t,x j                                              (4)     

 
Then the discrete approximation equation (4) can be written as 
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With apply Eq. (5) and QS implicit Caputo’s finite difference scheme, we approximate the 
problem in Eq. (1) in order to derive the QS implicit Caputo’s finite difference approximation 
equation as follows 
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For i = 4,8,…m-4. Again based on the approximation equation (6), we have  
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Then by simplifying Eq.(7),  it can be shown       
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Let us notice the approximation equation (8) being rewritten in the following form                                 
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       By applying Eq.(9) into all interior points of the solution domain problem in Eq (1), the 
linear system to be expressed in matrix form as  
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3. Formulation of QSAOR Iterative Method 
 
     In this paper, FSAOR, HSAOR and QSAOR iterative methods will be applied to solve 
linear system generated from the discretization of the problem in Eq.(1) as shown in Eq.(10). 
To derive the formulation of both proposed methods, let the coefficient matrix A in Eq.(10) be 
expressed as 
                 A = D - L – V                                                                                                        (11)                     
Where D, L and V are diagonal, strictly lower triangular and strictly upper triangular matrices 
respectively [4, 5, and 6]. Then, based on Eq. (11) the general scheme for the QSAOR 
iterative method can be shown as [7, 8, 9, and 10] 
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Where ( )kU~ represents an unknown vector at kth  iteration. Basically, the general algorithm for 
QSAOR iterative method to solve linear system (10) would be generally described in 
Algorithm 1. 

Algorithm 1: QSAOR method 
i. Initialize 0~

←U and 1010−←ε .  
ii. For 1,,2,1,0 −= nj   implement 

a. For pmppi −= ,,2,1  calculate 

                
( ) ( ) ( ) ( )[ ] ( ) ( ) fLDUDLVLDU kk 111 ~1~ −−+ −+−+−+−= ωββωββω  

b. Convergence test. If the convergence criterion 

i.e.
( ) ( ) 101 10−+ =ε≤− kk U~U~

is satisfied, go to next time level. 
Otherwise go back to Step (ii). 

Iii Display approximate solutions. 
 
However, If p=1, Algorithm 1 will be named as FSAOR 
 
 
4.   Numerical Experiments 
 
     For the numerical experiments, two examples were considered to verify the effectiveness 
of the implementation of Algorithm the QSAOR iterative method. To comparison between 
FSAOR, HSAOR and QSAOR methods, three criteria will be considered such as number of 
iterations (K), execution time (second)  and maximum error at three different values of 

1.8 and5.1,2.1 === βββ with different mesh sizes as 128, 256, 512, 1024 and 2048. In 
implementations of two numerical experiments, the convergence test considered the tolerance 
error, 1010−=ε . Results of numerical experiments, which were obtained from 
implementations Algorithm of the FSAOR, HSAOR and QSAOR iterative method, have been 
recorded in Tables 1 and 2 respectively.  



 
 
 
 
 
 

Example 1: [3] 
 
We consider the following space-fractional initial boundary value problem 
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At finite domain ,10 ≤≤ x  with  the diffusion   ( ) ( ) 5.0xxd βΓ= .  
 
Example 2: [3] 
 
We consider the following space-fractional initial boundary value problem 
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With the initial condition ( ) 320, xxxU −=  and zero Dirichlet  conditions.  
 

Table 1.Comparison between number of iterations (K), the execution time (second) and  
        maximum errors for the iterative methods using example at 8.1,5.1,2.1=β  

 
M 

 
Method β  = 1.2 β  = 1.5 β  = 1.8 

K Time Max 

Error 

K Time Max 

Error 

K Time Max 

Error 

128 
 

FSAOR 65 1.32 2.37e-02 188 3.88 6.21e-04 269 5.35 3.99e-02 
HSAOR 46 0.53 2.24e-02 78 0.83 6.99e-04 225 2.13 4.03e-02 
QSAOR 22 0.11 1.99e-02 40 0.13 8.19e-04 90 0.23 4.11e-02 

256 
 

FSAOR 128 10.00 2.44e-02 370 28.88 5.69e-04 756 58.90 3.97e-02 
HSAOR 77 2.94 2.37e-02 204 7.70 6.21e-04 732 28.08 3.99e-02 
QSAOR 38 0.39 2.24e-02 96 0.16 6.99e-04 282 1.61 4.03e-02 

512 FSAOR 270 84.05 2.47e-02 983 104 5.35e-04 2497 703 3.96e-02 
HSAOR 129 19.88 2.44e-02 544 83.61 5.69e-04 2388 368.65 3.97e-02 
QSAOR 73 1.69 2.37e-02 247 5.38 6.22e-04 912 19.44 3.99e-02 

1024 FSAOR 577 125 2.49e-02 3640 689 5.13e-04 5220 1119 2.36e-02 
HSAOR 278 179.11 2.47e-02 1457 502 5.35e-04 4098 982 3.38e-02 
QSAOR 150 12.59 2.44e-02 677 58.45 5.68e-04 2971 246.77 3.97e-02 

2048 FSAOR 1150 540 2.52e-02 5950 3102 5.09e-04 13203 3920 2.30e-02 
HSAOR 606 424 2.49e-02 3885 2035 5.24e-04 11376 3256 2.35e-02 
QSAOR 321 112.5 2.47e-02 1751 614.16 5.36e-04 9653 2977 3.96e-02 

 
Table 2.Comparison between number of iterations (K), the execution time (second) and  

       maximum errors for the iterative methods using example at 8.1,5.1,2.1=β  
 
M 

 
Method β  = 1.2 β  = 1.5 β  = 1.8 

K Time Max 

Error 

K Time Max 

Error 

K Time Max 

Error 

128 
 

FSAOR 48 0.93 1.80e-01 133 1.41 5.44e-02 148 1.52 1.25e-04 
HSAOR 34 0.45 1.73e-01 55 0.70 5.16e-02 135 1.24 1.76e-04 
QSAOR 20 0.09 1.59e01 24 0.08 4.61e-02 46 0.16 3.29e-04 

256 
 

FSAOR 97 3.58 1.84e-01 197 10.93 5.58e-02 457 16.66 1.44e-04 
HSAOR 55 2.67 1.81e-01 145 6.91 5.44e-02 439 11.61 8.88e-04 
QSAOR 29 0.27 1.73e-01 59 0.42 5.16e-02 147 0.87 1.76e-04 



 
 
 
 
 
 

512 FSAOR 106 18.71 5.39e-01 525 83.02 1.28e-02 1357 193.83 1.53e-04 
HSAOR 97 17.52 1.84e-01 386 73.38 5.58e-02 1147 101.20 4.09e-04 
QSAOR 49 1.08 1.80e-01 155 23.30 5.44e-02 475 49.98 8.8e-04 

1024 FSAOR 213 168 5.45e-01 1298 198 1.32e-02 4329 2103 1.25e-04 
HSAOR 209 150.23 1.86e-01 1030 160 5.65e-02 3731 1984.23 1.54e-04 
QSAOR 103 28.37 1.84e-01 413 33.56 5.58e-02 1538       426.05 4.09e-04 

2048 FSAOR 815 398 1.92e-01 2506 912 5.73e-02 6520 3834 2.30e-04 
HSAOR 456 273 1.86e-01 2326 878 5.80e-02 6290 3462 2.45e-04 
QSAOR 220 75.40 1.86e-01 1099 378.68 5.65e-02 4940 1714 1.54e-04 

 
 

5.   Conclusion 
 
     In this work, we discussed the implementation algorithm of the QSAOR iterative 
algorithm which uses two accelerated parameter. The QSAOR Algorithm has performance 
good speedup and efficiency for computational time and number of iterations. Again, the 
QSAOR algorithm has shown their superiority over   the FSAOR and HSAOR algorithm. For 
our future works, this study can be extended to investigate on the use of the AOR to combine 
with the concept pre-conditioner iterative family.  
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