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Abstract. An important step in data Tuberculosis analysis is data exploration and
representation. Tuberculosis treatment is crucial to protect the patients and it can
lead to death in untreated in countries with low income. In this case, we use the
machine learning technique by using Decision Tree and Random Forest for
classification the tuberculosis to analysis and represented based on the treatment
history. We use Tuberculosis dataset which employed from Province Aceh,
Indonesia. The result indicated the performance of the designed arrangement was
successful and could be used in Tuberculosis treatment analysis based on the
histories in Aceh Utara and Lhoksumawe.

1. Introduction

The global enemy of TB in the word is Indonesia. In general case, the TB patient had not
been notified in Indonesia. Based on the [1] Indonesia is a new active of TB case. In this case,
we tried to use the TB histories in recent years in Province of Aceh, Indonesia. The healthcare
has attracted much attention, which is looking for more data analytics in healthcare to relieve
medical problems in medical staff age, population, people living alone, and quality of life.
Data mining and forecasting play a vital role in modern social and medical fields [2].
Tuberculosis remains a major global health problem despite recent and continues progress in
prevention and treatment[3].

In general, the data analysis techniques will be widely used in disease surveillance,
decision-making, health management, and other fields, which focus on current intelligent
medical care [4]. According to the above discussion, this paper seeks to use a machine
learning technique by using Decision Tree and Random Forest to classification and
represented the Tuberculosis dataset in Aceh Province based on treatment history.

2. Data and Method
2.1 Data

The Tuberculosis data were retained from Dinas Kesehatan Kabupaten Aceh Utara,
Indonesia. We use tuberculosis which records of Rumah Sakit Cut Meutia, Lhoksemuawe,
Indonesia for two years 2016 — 2017. The raw data at this paper is the standard metadata
exchange formats of Excel.
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Distribution the Tuberculosis data in Province of Aceh show in Table 1. In this table,
Lhoksumawe and Aceh Utara are the wide areas which distribution of tuberculosis based on
histories.

Table 1.Distribution Tuberculosis Data in Province of Aceh, Indonesia based on object area.

No  Regency City
1. Lhoksumawe Banda Sakti, Muara Satu, Blang Mangat,
Muara Dua
2. Aceh Besar Kuta Malaka
3. Aceh Selatan Meukek
2.2 Method

The Decision Tree and Random Forest analysis are a general, predictive modelling that
have applications spanning a number of different areas [5]-[8]. Decision tree and Random
Forest are not only constructed via an algorithmic approach that identifies way to split a data
set based on different condition, but also are a non-parametric supervised learning methods
use for both classification and regression task. The presented tuberculosis data for two years
in 2016-2017 by using Machine learning technique Classification Model [9]-[11]. We
computed tuberculosis treatment at data and observatories on python. It provides read/write
support the most relevant tuberculosis and formats data [12]. We use the Machine Learning
by using Decision Tree and Random Forest [13]-[16] to classification the Tuberculosis time
series by Classification and to know the distribution of Tuberculosis in the regency of
Province of Aceh, Indonesia.

3. Result and Discussions

Figure 1(a) and 1(b) shows the result of Tuberculosis data from machine learning using the
Decision Tree on which respectively plotted in classification. The hierarchical tuberculosis
prevalence rate dataset, applied in the simulation, the distribution of Tuberculosis treatment
based on histories show that the new case (1) on green color is more than gave distribution (0)
on red color.
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Figure 1. Decision Tree Classification Training Set of TB



In figure 1, the decision tree classification result as the training set of TB. The training set
had been visual from making the confusion of TB histories. By using machine learning in
decision tree models needs to be tested in the real TB to measure how robust its predictions
are. TB histories data in the figure 1 was labeled where there is new case (1).
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Figure 2.Decision Tree Classification Test Set Result

The result of decision tree classification as test set show in figure 2. The test set indicated
there are sample data of TB used to provide an unbiased evaluation of final model fit on the
training data set (red colors).

The term of the machine learning model on decision tree represent entire sample of TB
devided into more homogeneous set. The splitting was process of deviding a node into more
sub-nodes of TB and making strategics split heavily affects a tree’s accuracy.

Random Forest Classification (Training set) of Tuberculosis
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Figure 3.Random Forest Classification for Training set Result



Random forest classifiation for training set result in Figure 3 are an esemble learning for
classification the TB data. The training set of TB show there are many new case show in table
1.

Random Forest Classification (Test set) of Tuberculosis
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Figure 4.Random Classification as Test Set Result of TB

The random forest in figure 4 is a TB Test set result and idictaed the bias in red color. In
this case, random forest and decision tree are difference, where the random forest is an
ensemble clasifier which uses many decision tree model to predict the TB histories. A
decision tree built using the whole consider all the TB features.

4. Conclusions

Compare with the previous studies, the classification accuracy obtained by using Decision
Tree and Random Forest was better to analysis and presented the Tuberculosis treatment
based on time series histories in Province of Aceh, Indonesia. The result indicated the
performance of the designed system and not only was successful and could be used in
Tuberculosis treatment analysis based on the histories in Aceh Utara and Lhoksuemawe has
increased but also it’s simple to understand the TB data and make some good interpretations.
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